ACCELERATE R APPLICATIONS WITH CUDA

PATRIC ZHAO, SR. GPU ARCHITECT, NVIDIA
patricz@nvidia.com
AGENDA

- Background
- Deploy CUDA Libraries
- Apply DIRECTIVES
- Combine CUDA C/C++/Fortran
- Case study: kNN

Appendix: Build R with CUDA by Visual Studio on Windows
1. BACKGROUND

➢ Advantages of R:
 - Help to think with statistical methods
 - Design for data orientation
 - Interactive with other databases
 - Integrate with other languages
 - Provide high quality graphics

➢ Drawbacks of R:
 - speed: sometimes is very slow
 - memory: requires all data to be loaded into major memory (RAM)
R SOFTWARE STACK WITH CUDA

- R GPU Packages: easy to use
- CUDA Libraries: high quality, usability, portability
- DIRECTIVES: both CPU and GPU
- CUDA C/C++/Fortran: high performance & flexibility
2. DEPLOY CUDA LIBRARIES TO R

- Excellent usability, portability and performance
- Less development efforts and risks

Two examples:

- Accelerate Basic Linear Algebra Subprograms (BLAS)
 - how to use drop in library with R (S5355, S5232)

- Accelerate Fast Fourier Transform (FFT)
 - how to deploy CUDA APIs
 - how to build, link and use CUDA shared objects (.so)
CASE 1. ACCELERATE BASIC LINEAR ALGEBRA SUBPROGRAMS (BLAS)

- **Target**: speedup R BLAS computation, such as \%*\%

- R applications
- R standard interface Rblas.so

Various CPU BLAS implementations
- Intel MKL CPUs
- OpenBLAS

cuBLAS/NVBLAS
- Fermi GPU
- Kepler GPU
- Maxwell GPU
Drop-in NVBLAS Library on Linux

- Wrapper of cuBLAS
- Includes Standard BLAS3 routines, such as SGEMM
- Supports Multiple-GPUs
- ZERO programming effort

Q: How to use it with R?
A: Simple PRE-LOAD nvblas.so on Linux

Normally:
R CMD BATCH <code>.R

NVBLAS:
env LD_PRELOAD=libnvblas.so
R CMD BATCH <code>.R
BENCHMARK RESULTS

- **revolution-benchmark** & **R-benchmark-2.5**

![Graphs showing benchmark results](image)

CPU: Intel, Sandy Bridge E5-2670, Dual socket 8-cores, @ 2.60GHz, 128 GB

GPU: NVIDIA, Tesla, K40m, 6GB memory
CASE 2. ACCELERATE FAST FOURIER TRANSFORM (FFT)

How to link CUDA libraries to R, including
- Determine R target function
- Write an interface function
- Compile and link to shared object
- Load shared object in R wrapper
- Execute in R
- Test Performance
Target Function in R

Basic compute pattern in finance, image processing, ...

such as stats:convolve() function in R is implemented by fft()

Fast Discrete Fourier Transform
Description
Performs the Fast Fourier Transform of an array.
Usage
fft(z, inverse = FALSE)
Arguments
z : a real or complex array containing the values to be transformed.
inverse : if TRUE, the unnormalized inverse transform is computed (the inverse has a + in the exponent of e, but here, we do not divide by 1/length(x))

CUDA library: cuFFT
Writing an interface function

Standard workflow for interface function

```c
#include <cufft.h>

void cufft(int *n, int *inverse, double *h_idata_re, double *h_idata_im, double *h_odata_re, double *h_odata_im) {
    cufftHandle plan;
    cufftDoubleComplex *d_data, *h_data;
    cudaMalloc((void**)&d_data, sizeof(cufftDoubleComplex)*(*n));
    h_data = (cufftDoubleComplex*)malloc(sizeof(cufftDoubleComplex) * (*n));
    // Covert data to cufftDoubleComplex type
    for(int i=0; i< *n; i++) {
        h_data[i].x = h_idata_re[i];
        h_data[i].y = h_idata_im[i];
    }
    cudaMemcpy(d_data, h_data, sizeof(cufftDoubleComplex) * (*n), cudaMemcpyHostToDevice);
    /* Use the CUFFT plan to transform the signal in place. */
    if(!*inverse) {
        cufftExecZ2Z(plan, d_data, d_data, CUFFT_FORWARD);
    } else {
        cufftExecZ2Z(plan, d_data, d_data, CUFFT_INVERSE);
    }
    cudaMemcpy(h_data, d_data, sizeof(cufftDoubleComplex) * (*n), cudaMemcpyDeviceToHost);
    // split cufftDoubleComplex to double array
    for(int i=0; i< *n; i++) {
        h_odata_re[i] = h_data[i].x;
        h_odata_im[i] = h_data[i].y;
    }
    /* Destroy the CUFFT plan. */
    cufftDestroy(plan);
    cudaFree(d_data);
    free(h_data);
} //main
```
Compile and link to Shared Object (.so)

```bash
nvcc -O3 -arch=sm_35 -G -l/usr/local/cuda/r65/include \ 
   -l/home/patricz/tools/R-3.0.2/include/ \ 
   -L/home/patricz/tools/R/lib64/R/lib -lR \ 
   -L/usr/local/cuda/r65/lib64 -lcufft \ 
   --shared -Xcompiler -fPIC -o cufft.so cufft-R.cu
```

Load Shared Object (.so) in Wrapper

```r
cufft1D <- function(x, inverse=FALSE) {
  dyn.load("cufft.so")
  n <- length(x)
  rst <- .C("cufft",
             as.integer(n),
             as.integer(inverse),
             as.double(Re(z)),
             as.double(Im(z)),
             re=double(length=n),
             im=double(length=n))
  rst <- complex(real = rst["re"], imaginary = rst["im"])
  return(rst)
}
```
Execute and Testing

```r
> source("wrap.R")
> num <- 4
> z <- complex(real = stats::rnorm(num), imaginary = stats::rnorm(num))
> cpu <- fft(z)
[1] 1.140821-1.352756i -3.782445-5.243686i 1.315927+1.712350i -0.249490+1.470354i
> gpu <- cufft1D(z)
[1] 1.140821-1.352756i -3.782445-5.243686i 1.315927+1.712350i -0.249490+1.470354i
> cpu <- fft(z, inverse=T)
[1] 1.140821-1.352756i -0.249490+1.470354i 1.315927+1.712350i -3.782445-5.243686i
> gpu <- cufft1D(z, inverse=T)
[1] 1.140821-1.352756i -0.249490+1.470354i 1.315927+1.712350i -3.782445-5.243686i
```
Intel Xeon CPU 8-cores (E5-2609 @ 2.40GHz / 64GB RAM)
NVIDIA GPU (Tesla K20Xm with 6GB device memory)
3. APPLY DIRECTIVES

- Directives is a common programming model now
 - Easy Programming: add several ‘#pragma’ statements
 - Portability: compiler, devices, performance
 - Works for legacy code: less effort

- Implementations in C/C++/Fortran level
 - CPU: Coarse granularity, task/data parallel w/ OpenMP
 - GPU: Finer granularity, data parallel w/ OpenACC
Example: speedup legacy code in `dist()`

- Compute the distances between the rows of a data matrix
- Implemented by C function

```r
> dist
function (x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)
{
  if (!is.na(pmatch(method, "euclidian")))
    method <- "euclidean"
  METHODS <- c("euclidean", "maximum", "manhattan", "canberra",
               "binary", "minkowski")
  method <- pmatch(method, METHODS)
  if (is.na(method))
    stop("Invalid distance method")
  if (method == -1)
    stop("Ambiguous distance method")
  x <- as.matrix(x)
  N <- nrow(x)
  attr(x, "dimnames") = list(NULL, NULL)
  contents <- x + x[1, ]
  D = diag(contents)
  if (method == 1)
    D = diag(contents)
  call = match.call()
  attributes(call) = list(method = method, call = match.call())
  .Call(C_Cdist, x, method, call, N, attr(x, "dimnames"))

<bytecode: 0x0000000014060a90>
<environment: namespace:stats>
```
Tips:
1. Reorganize code structure for GPU friendly
2. Avoid much logical checks, such as isnan()
3. Notice data copy method/size between CPU and GPU
4. Use `'-Mlarge_arrays'` compiler option for big data

source code: `<R source code path>/src/library/stats/src/distance.c`

```c
static double R_euclidean(double *x, int nr, int nc, int i1, int i2) {
    double dev, dist;
    int count, j;
    count = 0;
    dist = 0;
    for(j = 0; j < nc; j++) {
        if(both_non_NA(x[i1], x[i2])) {
            dev = (x[i1] - x[i2]);
            if(!ISNAN(dev)) {
                dist += dev * dev;
                count++;
            }
        }
    }
    i1 += nr;
    i2 += nr;
}
```

```c
// Patric: Fine granularity parallel by openACC
#include <cmath>
static double R_euclidean(double *x, int nr, int nc, int i1, int i2) {
    double dev, dist;
    int count, j;
    dist = 0;
    dev = 0;
    count = 0;
    #pragma acc routine(std::isnan) seq
    #pragma acc data copyin(x[0:nc*nr-1]) copy(dist)
    #pragma acc parallel for
    firstprivate(nc, nr) 
    private(j, dev, dist) 
    reduction(+:dist)
    for(j = 0; j < nc; j++) {
        dev = (x[i1 + j*nr] - x[i2 + j*nr]);
        dist += dev * dev;
    }
    // if(count == 0) return NA_REAL;
    // if(count != nc) dist /= ((double)count/nc);
    return sqrt(dist);
}
```
Compile with PGI

1. Do `make VERBOSE=1` in stats/src
 this step will generate detail information for build
2. Compile distance.c by PGI
 original: gcc -std=gnu99 ... -c distance.c -o distance.o
 changed: **pgcc** -acc -ta=nvidia -Minfo ... -c distance.c -o distance.o
3. Link all .o file to .so by PGI
 original: gcc -std=gnu99 -shared -o stats.so init.o <all.o>
 changed: **pgcc** -acc -ta=nvidia -shared -o stats.so init.o <all.o> ...
4. Update stats.so
 cp stats.so <R-path>/lib64/R/library/stats/libs/
5. Launch R and Execution as normally
 use nvprof to confirm : nvprof R
Compile with PGI

1. Do ‘make VERBOSE=1’ in stats/src
 this step will generate detail information for

2. Compile distance.c by PGI
 original: gcc -std=gnu99 ... -c distance.c -o distance.o
 changed: pgcc -acc -ta=nvidia -Minfo ... -c distance.c -o distance.o

3. Link all .o file to .so by PGI
 original: gcc -std=gnu99 -shared -o stats.so init.o <all.o>
 changed: pgcc -acc -ta=nvidia -shared -o stats.so init.o <all.o> ...

4. Update stats.so
 cp stats.so <R-path>/lib64/R/library/stats/libs/

5. Launch R and Execution as normally
 use nvprof to confirm : nvprof R

R_euclidean:
 53, Generating copyin(x[:nr*nc])
 Generating copy(dist)
 54, Accelerator kernel generated
 54, Sum reduction generated for dist
 55, #pragma acc loop gang, vector(256)
 /* blockIdx.x threadIdx.x */
 54, Generating Tesla code
Compile with PGI

1. Do `make VERBOSE=1` in stats/src
 this step will generate detail information for build

2. Compile distance.c by PGI
 original: gcc -std=gnu99 ... -c distance.c -o distance.o
 changed: pgcc -acc ...

3. Link all .o file to .so by PGI
 original: gcc -std=gnu99 -shared ...
 changed: pgcc -acc ...

4. Update stats.so
 cp stats.so <R-path>/lib64/R/library/stats/libs/

5. Launch R and Execution as normally
 use nvprof to confirm: nvprof R
RESULTS

Testing code from R:

```r
a <- runif(2^24, 1, 5)
b <- runif(2^24, 1, 5)
x <- rbind(a,b)

system.time( dist(x) )
```

<table>
<thead>
<tr>
<th>Vector (2^24)</th>
<th>Runtime (sec)</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>R built-in dist()</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td>OpenACC</td>
<td>0.093</td>
<td>2.23X</td>
</tr>
</tbody>
</table>

CPU Intel Xeon E5-2609 @ 2.40GHz / 64 GB RAM
GPU Tesla K20Xm with 6GB device memory
3. COMBINE CUDA LANGUAGES TO R

- Existing libraries can't meet up function/performance target
- Write up your own functions by CUDA
- Same flow with calling CUDA library
 - Just change the CUDA API to your own kernel
Step 1: write GPU kernel function for your algorithm

```c
__global__ void vectorAdd(const double *A,
 const double *B,
 double *C,
 int numElements)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if(i < numElements)
    {
        C[i] = A[i] + B[i];
    }
}
```
extern "C" void gvectorAdd(double *A, double *B, double *C, int *n)
{
 // Device Memory
 double *d_A, *d_B, *d_C;
 // Define the execution configuration
 dim3 blockSize(256,1,1);
 dim3 gridSize(1,1,1);
 gridSize.x = (*n + blockSize.x - 1) / blockSize.x;

 // Allocate output array
 cudaMalloc((void**)&d_A, *n * sizeof(double));
 cudaMemcpy(d_A, A, *n * sizeof(double), cudaMemcpyHostToDevice);
 cudaMemcpy(d_B, B, *n * sizeof(double), cudaMemcpyHostToDevice);
 cudaMemcpy(d_C, C, *n * sizeof(double));

 // Copy data to device
 cudaMemcpy((d_A, A, *n * sizeof(double)), cudaMemcpyHostToDevice);
 cudaMemcpy((d_B, B, *n * sizeof(double)), cudaMemcpyHostToDevice);
 // GPU vector add
 vectorAdd<<<gridSize, blockSize>>>(d_A, d_B, d_C, *n);

 // Copy output
 cudaMemcpy(C, d_C, *n * sizeof(double), cudaMemcpyDeviceToHost);
 cudaFree(d_A);
 cudaFree(d_B);
 cudaFree(d_C);
}
4. CASE STUDY: K NEAREST NEIGHBORS

- Common classify algorithm
- Find K nearest neighbors from the training data by distance
- \(O(MNP) \) time complexity for direct implementation
- Benchmark: handwritten digits data of MNIST

 Kaggle data size: test(~30k, ~2k), train(~40k, ~2k)

5-NN Classifier Map from Wikipedia

Image from ~athitsos
Parallel Strategies

CRAN packages
- class:kNN
- FNN :kNN

directives
- openACC
- openMP

algorithm
KNN

R implementation
Custom Function

CUDA libraries
- nvBLAS

CUDA directives
- openACC
- openMP

represent by pattern
matrix solver

isolate computationally intensive task
rewrite by C/C++/Fortran

Parallel Algorithm
Basic Algorithm and Performance Baseline

Steps for kNN:
- Query a record: compute distance, sort, return most frequent labels

\[\text{distance}(j) = \sum_k (\text{test}_{jk} - \text{train}_{jk})^2 \]

Implementations:
- Most common package
 class:KNN (C)
- Fast package
 FNN:KNN (C++, fast algorithm kd-tree)
- R implementation
 BenchR (R with 1 loop)

CPU: Ivy Bridge E5-2690 v2 @ 3.00GHz, dual socket 10-core, 128G
GPU: Nvidia Kepler, K40, 6G
Parallel Strategies

- **algorithm**: KNN
- **CRAN packages**: class:kNN, FNN :kNN
- **directives**: openACC, openMP
- **CUDA libraries**: nvBLAS
- **CUDA**: Parallel Algorithm
- **R implementation**: Custom Function
- **represent by pattern**: matrix solver
- **isolate computationally intensive task**: rewrite by C/C++/Fortran
- **encode by pattern**: OpenACC, openMP
- **CUDA directives**: OpenACC, openMP
Rewrite R implementation by pattern

\[
\text{distance} = \sum_j^n \sum_i^p (test_i - train_i)^2 \\
= \sum_j^n \sum_i^p (test_i^2 - 2*test_i*train_i + test_i^2)_j \\
= \sum_j^n \sum_i^p test_{ij}^2 - 2*\sum_j^n \sum_i^p (test_i * train_i)_j + \sum_j^n \sum_i^p train_{ij}^2
\]

Now, we have represented KNN algorithm by matrix operations, and we can easily accelerate it by CUDA libraries as we mentioned previously.
Rewrite KNN by matrix pattern and vectorization

Rewrite BenchR knn by matrix operations and vectorization
knn.customer.vectorization <- function(traindata, testdata, cl, k)
{
 n <- nrow(testdata)
pred <- rep(NA_character_, n)

 # (traindata[i,] - testdata[i,])^2 --> (a^2 - 2ab + b^2)
 traindata2 <- rowSums(traindata*traindata)
testdata2 <- rowSums(testdata*testdata)
 # nvBLAS can speedup this step
 testXtrain <- as.matrix(testdata) %*% t(traindata)

 # compute distance
 dist <- sweep(testdata2 - 2 * testXtrain, 2, traindata2, '+')

 # get the k smallest neighbor
 nn <- t(apply(dist, 1, order))[,1:k]

 # get the most frequent labels in nearest K
 class.frequency <- apply(nn, 1, FUN=function(i) table(factor(cl[i], levels=unique(cl))))
 # find the max label and break ties
 pred <- apply(class.frequency, 2, FUN=function(i) sample(names(i)[i == max(i)], 1))

 unname(factor(pred, levels=unique(cl)))
}

- Matrix version is as fast as FNN:knn
- Run with nvBLAS we got:
 - 15X faster than class:knn
 - 3.8X faster than FNN:knn
Parallel Strategies

- CRAN packages
 - class: kNN
 - FNN : kNN
- directives
 - openACC
 - openMP
- algorithm
 - KNN
- R implementation
 - Custom Function
- represent by pattern
 - matrix solver
- CUDA libraries
 - nvBLAS
- isolate computationally intensive task
 - rewrite by C/C++/Fortran
- directives
 - openACC
 - openMP
- CUDA
 - Parallel Algorithm
Isolated computational task and rewrite by C

rewrite kNN by matrix operations and vectorization

```r
knn.customer.vectorization <- function(traindata, testdata, cl, k) {
  n <- nrow(testdata)
pred <- rep(NA_character_, n)

  # (traindata[i,] - testdata[i,])^2 --> (a^2 - 2ab + b^2)
  traindata2 <- rowSums(traindata*traindata)
testdata2  <- rowSums(testdata*testdata)
testXtrain <- as.matrix(testdata) %*% t(traindata)

  # compute distance
  dist <- sweep(testdata2 - 2 * testXtrain, 2, traindata2, '+')

  # get the k smallest neighbor
  nn <- t(apply(dist, 1, order))[,1:k]

  # get the most frequent labels in nearest K
  class.frequency <- apply(nn, 1, FUN=function(i) table(factor(cl[i], levels=unique(cl))))

  # find the max label and break ties
  pred <- apply(class.frequency, 2, FUN=function(i) sample(names(i)[i == max(i)],1))

  unname(factor(pred, levels=unique(cl)))
}
```

dist.C

```r
dist.C <- function(tndata, ttdata) {
  m <- nrow(ttdata)
n <- nrow(tndata)
p <- ncol(ttdata)
  rst <- .C("compute_dist", as.integer(n), as.integer(m), as.integer(p), as.double(ttdata), as.double(t(tndata)), mm = double(length=n*m))
  return(matrix(rst["mm"], nrow=m, ncol=n))
}
```
Write a C function
- don’t need to transfer R to C line by line (use C style!)
- rethink KNN computations, which is really like GEMM

\[\text{GEMM}(i, j) = \sum_{k}^{P} (A_{ijk} \times B_{ijk}) \]

\[\text{distance matrix}(i, j) = \sum_{k}^{P} (\text{test}_{ijk} - \text{train}_{ijk})^2 \]
So, we write C code by GEMM style for KNN

```c
void compute_dist(int *m, int *n, int *p, double *traindata, double *testdata, double *result);

void compute_dist(int *m, int *n, int *p, double *traindata, double *testdata, double *result)
{
    int i = 0, j = 0, k = 0 ;

    // Compute Distance Matrix
    for(i = 0; i < (*m); i++)
        for(k = 0; k < (*p); k++)
            for(j = 0; j < (*n); j++)
            {
                // GEMM
                //  result[i* (*n) +j] += testdata[i* (*p) +k] *  traindata[k * (*n) +j];

                // KNN
                double dist = testdata[i* (*p) +k] - traindata[k * (*n) +j];
                result[i* (*n) +j] += dist * dist ;
            }
}
```
And then, accelerate by openACC

```c
void compute_dist(int* m, int* n, int* p, double* restrict traindata, double* restrict testdata, double* restrict result);

void compute_dist(int* m, int* n, int* p, double* restrict traindata, double* restrict testdata, double* restrict result) {
    int i = 0, j = 0, k = 0;
    int mm = *m, nn = *n, pp = *p;

    // Compute Distance Matrix
    #pragma acc data copyout(result[0 : (mm * nn) -1]), copyin(testdata[0 : (mm * pp) -1], traindata[0 : (pp * nn) -1])
    {
        #pragma acc region for parallel, private(i), vector(8)
            for(i = 0; i < mm; i++) {
                #pragma acc for parallel,private(j,k), vector(8)
                    for(j = 0; j < nn; j++) {
                        #pragma acc for seq
                            for(k = 0; k < pp; k++) {
                                double tmp = testdata[i* pp +k] - traindata[k * nn +j];
                                result[i* nn +j] += tmp * tmp;
                            }
                        }
                    }
            }
        } // end openACC data region
    }
```
- C version is as fast as FNN:knn
- Compile with PGI (-Mlarge_arrays), we got:
 \textbf{13X} faster than class:knn
 \textbf{3.2X} faster than FNN:knn
Parallel Strategies

CRAN packages
- class:kNN
- FNN :kNN

CRAN packages directives
- openACC
- openMP

CUDA libraries
- nvBLAS

CUDA directives
- openACC
- openMP

R implementation
- Custom Function

algorithm
- KNN

R implementation represent by pattern
- matrix solver

parallel computationally intensive task
- rewrite by C/C++/Fortran

CUDA
- Parallel Algorithm
Accelerate CRAN packages by directive
- May be not easy since the package structure will be complex
- Need to fully understand algorithms and their implementations
- Select proper data decomposition method
 coarse granularity - openMP
 finer granularity - openACC

Class:KNN : source code is under:
<R source code path>/src/library/Recommended/class/src/class.c
knn function: VR_knn(…)

Coarse Granularity Decomposition

void VR_knn(Sint *kin, Sint *lin, Sint *pntr, Sint *pnte, Sint *p,
 double *train, Sint *class, double *test, Sint *res, double *pr,
 Sint *votes, Sint *nc, Sint *cv, Sint *use_all)
{

 // Patric: Coarse Granularity Parallel by openMP
 #pragma omp parallel for \
 private(npat, i, index, j, k, k1, kn, mm, ntie, extras, pos, nclass, j1, j2, needed, t, dist, tmp, ndist) \
 shared(pr, res, test, train, class, nte, ntr, nc)
 for (npat = 0; npat < nte; npat++) {

 // Patric: each thread malloc new buffer to resolve memory conflict of votes
 // change all votes to __votes in below source code.
 // Calloc is thread-safe function located in memory.c.
 Sint *__votes = Calloc(nc+1, Sint);

 Free(__votes);
 } // Patric: Top iteration and end of openMP
 RANDOUT;
}
Finer Granularity Decomposition

```c
void VR_knn(Sint *kin, Sint *lin, Sint *pntr, Sint *pnte, Sint *p,
          double *train, Sint *class, double *test, Sint *res, double *pr,
          Sint *votes, Sint *nc, Sint *cv, Sint *use_all)
{
    // Patric: Finer Granularity Parallel by openACC
    #pragma acc data copyin(test[0:nn*nte], train[0: nn*ntr])
    for (npat = 0; npat < nte; npat++) {
       ......
    }
    // Only parallelize this loop for Least Squares Model
    #pragma acc parallel loop private(k), reduction(+:dist)
    for (k = 0; k < *p; k++) {
        tmp = test[npat + k * nte] - train[j + k * ntr];
        dist += tmp * tmp;
    }
    ......
    RANDOUT;
}
```
- OpenACC version is not fast than original (only 2k features)
- OpenMP (1 CPU, 10 threads) is faster, we got:
 - **8.3X** faster than class:knn
 - **2.3X** faster than FNN:knn
Our post includes more details:

http://devblogs.nvidia.com/parallelforall/author/patricz/

Learn more on GTC 2015

CUDA General (tools, libraries)
S5820 - CUDA 7 and Beyond

CUDA Programming
S5651 - Hands-on Lab: Getting Started with CUDA C/C++
S5661, S5662, S5663, S5664, CUDA Programming Series

Directives
S5192 - Introduction to Compiler Directives with OpenACC

Handwritten Digit Recognition
S5674 - Hands-on Lab: Introduction to Machine Learning with GPUs: Handwritten Digit Classification
APPENDIX:

BUILD R WITH CUDA BY VISUAL STUDIO 2013 ON WINDOWS

1. Download and install Visual Studio 2013
 http://www.visualstudio.com/downloads/download-visual-studio-vs

2. Download and install CUDA toolkit
3. Open VS2013, and create ‘New Project’ then you will see NVIDIA/CUDA item.
4. Select ‘Visual C++’ → ‘Win32 Console Application’
5. Select ‘DLL’ for Application type to create a ‘Empty project’ in Wizard platform
6. Changes Project type to CUDA

‘Solution Explorer’ →
right click project name →
‘Build Dependencies’ →
‘Build Customizations...’ →
‘CUDA 6.5’
7. Add cuda and cuda accelerated libraries into Visual Studio

Right project name in ‘Solution Explorer’ →
‘Properties’ → ‘Linker’ → ‘Input’ → ’Additional Dependencies’
Add “cufft.lib” and “cudart.lib”
8. Add CUDA source code file with .cu suffix

Right click “Source Files” in “Solution Explorer”

→ ‘Add’
→ ‘New Item’
→ ‘C++ File(.cpp)’
→ type cuFFT.cu
- Check the ‘Item type’ of `cuFFT.cu` by right clicking filename (`cuFFT.cu`) and selecting ‘Properties’.
- The type should be ‘CUDA C/C++’; otherwise, change to CUDA type.
9. Change to 64bit in case you are using 64bit R and CUDA

→ ‘Build’
→ ‘Configuration Manager’
→ ‘Active solution platform:’
→ ‘New’
→ select ‘x64’
10. Select 64bit CUDA and shared runtime
 → Right project name in ‘Solution Explorer’
 → ‘Properties’ → ‘CUDA C/C++’ → ‘Common’
 Select:
 ‘Shared/dynamic CUDA runtime library’ in CUDA Runtime
 ’64-bit (--machine 64)’ in Target Machine Platform
11. Copy your CUDA code into this file

- Add necessary header files for CUDA

  ```
  /* Basic API header files*/
  #include <stdlib.h>
  
  /* CUDA API header files*/
  #include <cufft.h>
  #include <cuda_runtime.h>
  ```

- Declare routines which need to call from R with
 extern “c” __declspec(dllexport)

  ```
  extern "C" __declspec(dllexport)
  void cufft(int *n, int *inverse, double *h_idata_re, double *h_idata_im, double *h_odata_re, double *h_odata_im)
  ```
12. Build Project and get cuFFT.dll

13. Load cuFFT.dll in R and check the dll path
14. Run cuFFT in R on Windows

```r
> z <- complex(real = stats::rnorm(num), imaginary = stats::rnorm(num))
> cufft1D(z)
[1] -3.375226-0.617570i  1.128137+3.148557i  -0.781643+2.983633i  -6.233749-0.037744i
> fft(z)
[1] -3.375226-0.617570i  1.128137+3.148557i  -0.781643+2.983633i  -6.233749-0.037744i
```
Multi-GPUs Case: General Matrix Multiplication

- Just add more GPU index in nvblas.conf file
 \textit{NVBLAS_GPU_LIST 0 1}
- GPU solution gains
 - higher speedup than multi-threads solutions